Research on Clustering Method Based on Weighted Distance Density and K-Means

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Weighted K-Means for Density-Biased Clustering

Clustering is a task of grouping data based on similarity. A popular k-means algorithm groups data by firstly assigning all data points to the closest clusters, then determining the cluster means. The algorithm repeats these two steps until it has converged. We propose a variation called weighted k-means to improve the clustering scalability. To speed up the clustering process, we develop the r...

متن کامل

Persistent K-Means: Stable Data Clustering Algorithm Based on K-Means Algorithm

Identifying clusters or clustering is an important aspect of data analysis. It is the task of grouping a set of objects in such a way those objects in the same group/cluster are more similar in some sense or another. It is a main task of exploratory data mining, and a common technique for statistical data analysis This paper proposed an improved version of K-Means algorithm, namely Persistent K...

متن کامل

An Improved Algorithm of Rough K-Means Clustering Based on Variable Weighted Distance Measure

Rough K-means algorithm has shown that it can provides a reasonable set of lower and upper bounds for a given dataset. With the conceptions of the lower and upper approximate sets, rough k-means clustering and its emerging derivatives become valid algorithms in vague information clustering. However, the most available algorithms ignore the difference of the distances between data objects and cl...

متن کامل

compactifications and function spaces on weighted semigruops

chapter one is devoted to a moderate discussion on preliminaries, according to our requirements. chapter two which is based on our work in (24) is devoted introducting weighted semigroups (s, w), and studying some famous function spaces on them, especially the relations between go (s, w) and other function speces are invesigated. in fact this chapter is a complement to (32). one of the main fea...

15 صفحه اول

Mini-model method based on k -means clustering

Mini-model method (MM-method) is an instance-based learning algorithm similarly as the k-nearest neighbor method, GRNN network or RBF network but its idea is different. MM operates only on data from the local neighborhood of a query. The paper presents new version of the MM-method which is based on k-means clustering algorithm. The domain of the model is calculated using k-means algorithm. Clus...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Procedia Computer Science

سال: 2020

ISSN: 1877-0509

DOI: 10.1016/j.procs.2020.02.056